

Ion Propulsion System (IPS)

Information Summary for New Frontiers Missions

January 2017

Table of Contents

1.0	INTR	ODUCTION	. 4
	1.1	BACKGROUND	. 4
2.0	NEX	T TECHNOLOGY DEVELOPMENT SUMMARY	. 4
	2.1	NEXT PM THRUSTER	. 5
		2.1.1 PM Thruster Summary	. 5
		2.1.2 PM Thruster Performance	. 6
		2.1.3 Thruster Lifetime	. 6
	2.2	NEXT EM PPU	. 7
		2.2.1 EM PPU Summary	. 7
		2.2.2 EM PPU Technical Issues	. 7
3.0	NEX	T-C PROJECT FLIGHT COMPONENT DEVELOPMENT	. 7
	3.1	GOVERNMENT-DEVELOPED COMPONENTS	. 8
	3.2	NEXT-C FLIGHT THRUSTER	. 9
	3.3	NEXT-C PPU	. 9
	3.4	NEXT-C SYSTEM INTEGRATION TESTS	10
	3.5	NEXT-C PROJECT SCHEDULE	11
4.0	NEX	T-C AND NEW FRONTIERS	11
	41	NEW FRONTIERS AD OFFERINGS	11
	42	NEW FRONTIERS PROPOSAL SUPPORT	11
	4.3	PHASE B – PHASE E SUPPORT	11
	44	NEXT/NEXT-C ENGINEERING HARDWARE	11
	4.5	NEXT-C DOCUMENTATION	11
5.0	CON		12
6.0	REEF		·- 12
7.0			10
7.0	APPt		16
	А.	NEXT TECHNOLOGY PROJECT COMPONENTS	16
		A.1 Introduction	16
		A.2 Propellant Management Subsystem (PMS)	16
		A.3 Gimbal Component Summary	17
		A.4 Digital Control Interface Unit (DCIU) Summary	19
	D		19 20
	D.		20 2∩
		B.1 NEXT Fini ITHUSTER THIOTHE LADIE TT	20 21
		B.3 NEXT PM Thruster/EM PPU Curve Fits	22
	C.	NEXT-C SCHEDULE	23
	D.	ACRONYMS AND ABBREVIATIONS	24

Table of Tables

Table 2.0-1:	NEXT-based IPS Subsystems	5
Table B.1-1:	NEXT PM Thruster Throttle Table 11 (Beginning of Life)	20
Table B.2-1:	NEXT PM Thruster Extended Throttle Table 11 (Beginning of Life)	21
Table B.3-1:	NEXT PM Thruster/EM PPU Curve Fits	22

Table of Figures

Figure 2.0-1:	NEXT ion propulsion system elements	5
Figure 2.1.1-1:	NEXT PM thruster during performance acceptance testing	6
Figure 2.2.1-1:	NEXT EM PPU	7
Figure 3.1-1:	NEXT-C/Spacecraft Functional Block Diagram	8
Figure 3.2-1:	Key Requirements of the NEXT-C Thruster	9
Figure 3.3-1:	Key Requirements of the NEXT-C Flight PPU	10
Figure A.2-1:	Propellant Management System	17
Figure A.3-1:	Gimbal Assembly	18

1.0 INTRODUCTION

This document serves as a guide to New Frontiers mission proposal teams. It describes the NEXT-C Project and the \$10M incentive for two NEXT-C thrusters and two NEXT-C Power Processing Units (PPUs) in the New Frontiers 4 draft Announcement of Opportunity (AO). This document also provides background information on other subsystem components for information purposes. Proposers would have the ability to utilize any of these components if desired, but they would not be provided as government furnished equipment (GFE).

1.1 BACKGROUND

The NEXT ion propulsion system was developed under the NASA Science Mission Directorate In-Space Propulsion Technology (ISPT) project. The primary objective of the NEXT technology project was to significantly increase performance for primary propulsion to planetary bodies by leveraging NASA's very successful ion propulsion program for low-thrust applications. The government/industry team completed the highest fidelity hardware planned, including a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. To transition this technology to flight applications, the Planetary Science Division of the NASA Science Mission Directorate initiated the project to build NEXT-C thruster and PPU flight hardware and provide as GFE to a future NASA mission and commercialize the hardware such that it is available for other users, such as New Frontiers.

NEXT is an advanced ion propulsion system oriented towards robotic exploration of the solar system using solar electric power. It is based on an evolutionary design that has strong heritage to the NSTAR (NASA's Solar Electric Propulsion Application Readiness) ion propulsion system (IPS) that is currently flying on the Dawn spacecraft. Potential mission destinations that can benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, as well as outer planets and their moons when chemical or aerocapture approaches are used for orbit capture at the destination body. This range of robotic-exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 5 to 25 kW, as referenced to solar-array output at one Astronomical Unit (AU).

2.0 NEXT TECHNOLOGY DEVELOPMENT SUMMARY

The NEXT technology development project focused on those elements of an ion propulsion system that were most applicable to a range of mission concepts and had the greatest technology development risks. Figure 2.0-1 illustrates the NEXT technology project products in a representative, simplified, system configuration. This figure represents the subset of an overall ion propulsion system that the NEXT technology project team addressed. Appendix J of the "NASA Procedural Requirements (NPR) 7120.8 NASA Research and Technology Program and Project Managements Requirements" provides the definition of technology hardware maturity. Table 2.0-1 describes the various major subsystems of a flight ion propulsion system (IPS), and the hardware maturity (per NPR 7120.8) achieved on the NEXT technology project. This document retains the hardware maturity terminology used in prior NEXT publications.

Appendix A provides summaries of other products developed as part of the NEXT technology project. These are provided for information purposes only.

Figure 2.0-1: NEXT ion propulsion system elements

IPS Subsystem	Function	NEXT Hardware Maturity Per NPR 7120.8		
Ion Thruster	Provide thrust	Engineering Unit		
Power Processing Unit	Converts solar array power to thruster input power	Engineering Unit		
Propellant Tank	Xenon storage	Not addressed on NEXT		
High Pressure Assembly	Control xenon pressure to LPA	Engineering Unit		
Low Pressure Assembly	Control xenon flow to thruster	Engineering Unit		
Miscellaneous valves tubing and fittings	Xenon loading, isolation control, and purge flow	Not addressed on NEXT		
Gimbal	Point thruster to desired vector	Brassboard		
Control/Interface Unit	Control/data interface to spacecraft, PPU and xenon feed system	Simulator only, with brassboard xenon flow control cards		

Table 2.0-1:	NFXT-based IPS	Subsystems
		oubsystems

2.1 NEXT PM THRUSTER

2.1.1 PM Thruster Summary

The NEXT ion thruster was developed through a two-phase approach during the NEXT technology project. NASA Glenn Research Center (GRC) developed the initial design concept and validated it through fabrication and test of five Engineering Model (EM) thrusters. GRC transferred the thruster concept to Aerojet for implementation in the PM thruster design and hardware. Aerojet delivered a prototype model (PM) thruster (equivalent to Engineering Unit per NPR 7120.8), and parts/sub-assemblies for a second thruster to NASA GRC. Key validation activities included performance acceptance testing, environmental analysis and testing, and life

analysis and testing. The thruster was judged as TRL 6 in four independent TRL assessments. To preserve the demonstrated performance and lifetime capability, the PM thruster design is the baseline for the NEXT-C flight thruster development. Figure 2.1.1-1 shows the NEXT PM thruster operating during performance acceptance testing.

Figure 2.1.1-1: NEXT PM thruster during performance acceptance testing

2.1.2 PM Thruster Performance

Thrust and specific impulse are the primary measures of effective conversion of power and propellant to achieve the required mission velocity change (ΔV). Thruster performance is currently based on the NEXT Throttle Table 11 (TT11). This Throttle Table includes updates from the incorporation of extensive diagnostic test data and measured thrust generated in testing at The Aerospace Corporation, information gleaned from the thruster Long Duration Test, and assessment of operating margins. The key parameters of TT11 are summarized in Appendix B of this document. Additional detailed throttle table data is available upon request.

Extended Throttle Level (ETL) throttle points were characterized during testing at The Aerospace Corporation. The ETL points represent capabilities within the current thruster design and PPU output ranges that were not incorporated in testing during the technology-project-thruster-verification-test program. These points provide higher thrust-to-power capability, with operations at higher beam currents and propellant flow rates for some beam voltages. While performance verification of these points is extensive, thruster lifetime characterization has not been completed; therefore, they should be considered as having potential to provide increased capability (performance margin) for missions benefiting from high thrust-to-power, not as baseline capability. ETL summary parameters are provided in Appendix B of this document.

2.1.3 Thruster Lifetime

The NEXT thruster has a test-demonstrated mission life capability for throttle levels (TL) 1-40 exceeding 600 kg xenon throughput and 22.5 MN-s total impulse. Given thruster lifetime dependence on throttling strategy, application of the NEXT thruster life model by GRC against mission-specific throttle profiles provided by the mission should be accomplished to establish life margins for the intended mission applications. The values demonstrated during the execution of the Long Duration Test reflect the operational history of the test, and therefore, do not necessarily represent hard or firm maxima.

2.2 NEXT EM PPU

2.2.1 EM PPU Summary

The engineering model (EM) power processing unit (PPU) for the NEXT project is shown in Figure 2.2.1-1. This PPU is capable of processing from 0.5 to 6.9 kW of output power for operating the NEXT ion thruster. Its design includes many significant improvements for better performance over the state-of-the-art NSTAR PPU. The most significant difference is the beam supply that is comprised of six modules, and is capable of very efficient operation through a wide power and voltage range. The previously validated NSTAR PPU provided the basis for the low voltage power supplies. While EM PPU performance and functionality was successfully tested across a range of relevant operating conditions on both a thruster and resistive load, technical issues prevented completion of environmental testing; therefore, the PPU was judged as TRL 4 in three of the four independent TRL assessments. The NEXT-C flight PPU design was not constrained to the PPU design developed during the technology project, but the design is largely similar.

Figure 2.2.1-1: NEXT EM PPU

2.2.2 EM PPU Technical Issues

The NEXT technology project encountered a number of PPU technical issues during unit and system testing. Early issues involved a design error that was easily corrected and a second source part that did not have equivalent capability. The more demanding issue was multiple occurrences of multi-layer ceramic (MLC) capacitor failures. This issue was ultimately traced to the piezoelectric characteristic of the custom capacitor being excited in the PPU application. Reference 32 summarizes these issues and Reference 33 provides detailed information on the MLC capacitor failure resolution. Each issue was resolved with paths to flight production identified. The specific mitigations and lessons learned will be incorporated into the NEXT-C PPU development.

3.0 NEXT-C PROJECT FLIGHT COMPONENT DEVELOPMENT

The NEXT-C Project has two phases: a development phase and the flight hardware phase. The development phase provides risk reduction prior to building the NEXT-C flight hardware. The NEXT-C thruster and PPU will be readily available to future NASA users as a commercial product.

The NEXT-C contract was defined such that NASA considered modifications or alternatives to the existing design, particularly the PPU design, to facilitate broader use in non-NASA applications.

The following subsections provide a summary description of the NEXT-C flight hardware components.

3.1 GOVERNMENT-DEVELOPED COMPONENTS

The NEXT-C Project is a NPR 71200.5E project, with product development consistent with the Class B payload guidance in NPR 8705.4. The New Frontiers Announcement of Opportunity is currently planned to be released in January 2017, with final mission down-select in May 2019. The NEXT-C government developed components along with interface responsibilities of the mission spacecraft are shown in Figure 3.1-1. Implementation of DCIU functionality is user dependent. The NEXT-C Project will provide PPU/Feed System/Thruster control algorithms to the flow diagram level.

Figure 3.1-1: NEXT-C/Spacecraft Functional Block Diagram

3.2 NEXT-C FLIGHT THRUSTER

A summary of key design and performance requirements of the NEXT-C Thruster is shown in Figure 3.2-1.

Figure 3.2-1: Key Requirements of the NEXT-C Thruster

Two NEXT-C thrusters will undergo a proto-flight test program as part of the NEXT-C project. The project will provide the flight thruster specification, acceptance data packages, analytical models, verification reports, interface control documentation, control algorithms to the flow diagram level, and operations documentation to the mission project. Development-level Government Support Equipment (GSE) and Technical Support Equipment (TSE) can be provided to support use of thrusters, but coordination with NASA and Aerojet Rocketdyne will be needed to accommodate those requests.

3.3 NEXT-C PPU

The NEXT-C Project will design, fabricate and test a prototype PPU during the development phase. A prototype unit is defined as:

- a form, fit, and function equivalent to a flight unit;
- use of non-flight parts acceptable for cost/schedule savings when equivalent flight parts are available;
- subjected to functional/performance testing across the full range of allowable conditions and qualification-level environmental testing.

Completion of prototype PPU verification at the unit level and in integrated PPU/thruster performance and EMI tests is planned for July of 2017.

Efficient conversion of array power to thruster power is important in achieving overall IPS performance. The PPU requirement for efficiency is shown in Figure 3.3-1. The NEXT-C PPU accepts unregulated primary power over a range of 80-160V.

Parameter	Requirement		
Input Power Range, W	640-7360		
Peak Efficiency (HV Bus)	> 93.5%		
High Power Input Voltage, V	80-160		
Housekeeping Input Bus, V	22-34		
Housekeeping Power, W	< 40		
Mass, kg	< 36.8		

Environmental Reqs.	
Operating Temp, C	-24 to +50
Non-operating Temp, C	-40 to +71
Vibration, Grms	14.1Grms

Figure 3.3-1: Key Requirements of the NEXT-C Flight PPU

The mission is responsible for flight harnesses between the PPU and thruster, and between the PPU and spacecraft interfaces. The project will provide the flight PPU specification, acceptance data packages, analytical models, verification reports, interface control documentation, control algorithms to the flow diagram level, and operations documentation to the mission project. PPU Ground Support Equipment (GSE) and/or Test Support Equipment (TSE) could be provided to the mission project to support spacecraft integration and test. Again, this would need to be coordinated with NASA GRC and Aerojet Rocketdyne. The mission project is responsible for any hardware simulators needed to support propulsion system or spacecraft-level integration and test.

3.4 NEXT-C SYSTEM INTEGRATION TESTS

The NEXT-C Project is planning to conduct the following system integration tests:

- Prototype PPU/PM thruster integrated performance and functional testing. This test will be performed after Prototype PPU verification testing at the unit level.
- Prototype PPU/PM thruster integrated EMI/EMC testing will follow above integration test.
- Flight PPU/Flight thruster integrated performance and functional testing will complete the acceptance test sequence.

3.5 NEXT-C PROJECT SCHEDULE

The NEXT-C Project Schedule is shown in Appendix-D of this document, and is current as of the publication date of this document. For the latest project schedule, please consult the point of contact shown in Section 5.0 of this document.

4.0 NEXT-C AND NEW FRONTIERS

4.1 NEW FRONTIERS AO OFFERINGS

While the NEXT-C project is developing the first two sets of NEXT-C flight thrusters and PPUs, the hardware will likely be utilized by other missions prior to New Frontiers. The New Frontiers 4 Draft Announcement of Opportunity offered a \$10M incentive for the purchase of two NEXT-C thrusters, two NEXT-C PPUs and other supporting equipment (handling fixtures, GSE, etc.) The procurement of these thrusters can either be negotiated directly with Aerojet Rocketdyne, or the proposers may elect to work with NASA GRC to complete that negotiation on behalf of the proposer.

4.2 NEW FRONTIERS PROPOSAL SUPPORT

The NEXT-C Project will support mission teams during New Frontiers proposal development. All interactions will be coordinated through the NEXT-C Interface lead at NASA GRC. The interface lead will coordinate the GRC technical support required, and will coordinate interactions with the mission team to provide information and to coordinate interface definition and integration/operations planning.

The NEXT-C project is not currently funded for New Frontiers Phase A support. The NEXT-C project could support Phase A work, however that work should be scoped and included as part of the Phase A proposal and funded appropriately.

4.3 PHASE B - PHASE E SUPPORT

The NEXT-C project is not funded for any support of any New Frontiers missions should they be selected for Phase B and beyond. The support of the NEXT-C project should be negotiated with the GRC NEXT-C point of contact for New Frontiers and then incorporated into the mission proposer's budget.

4.4 NEXT/NEXT-C ENGINEERING HARDWARE

There are significant hardware assets from the NEXT technology project as well as the NEXT-C project that could be made available to the proposers for their missions. Given that there is the potential for the use of that hardware by both New Frontiers proposers as well as other NEXT-C users, the use of the hardware should be negotiated with NASA GRC and Aerojet Rocketdyne in order to assure that it is available when needed. There is a wide variety of hardware available, so it is not listed here, but proposers can contact NASA GRC for further information.

4.5 NEXT-C DOCUMENTATION

The following information is available upon request to the contact identified below.

• NEXT-C/Spacecraft Interface Control Document (ICD) that contains pertinent information on PPU and thruster interfaces to the spacecraft.

- PPU Specification
- Other detailed analyses that have been completed by the project per the Aerojet Rocketdyne contract deliverables.

This information is ITAR-sensitive; release will be controlled through the following process:

- 1. Initiator notifies contact identified below of request.
- 2. NASA will provide an export control request form to initiator.
- 3. Initiator completes form and submits request.
- 4. Documentation is provided through appropriate controlled-release mechanism.

5.0 CONTACT INFORMATION

Please direct all inquiries and requests to the following individual:

Margaret (Meg) Nazario NASA John H. Glenn Research Center 21000 Brookpark Road, Mail Stop: 162-6 Cleveland, OH 44135 (216) 433-8665 margaret.l.nazario@nasa.gov

6.0 **REFERENCES**

- [1] Van Noord, J. and Herman, D. "Application of the NEXT Ion Thruster Lifetime Assessment to Thruster Throttling Strategies" AIAA-2008-4526, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC), Hartford, CT, July 2008.
- [2] Herman, D., Patterson, M., and Soulas, G., "Performance Characteristics of the NEXT Long-Duration Test After 17,200 hours of Operation and 352 kg of Xenon Processed" AIAA-2008-4527, 44th AIAA/ASME/SAE/ASEE JPC, Hartford, CT, July 2008.
- [3] Benson, S., Patterson, and Snyder, J., "NEXT Ion-propulsion system Progress Towards Technology Readiness," AIAA-2008-5285, 44th AIAA/ASME/SAE/ASEE JPC, Hartford, CT, July 2008.
- [4] Herman, D. and Pinero, L., "NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing" AIAA-2008-4812, 44th AIAA/ASME/SAE/ASEE JPC, Hartford, CT, July 2008.
- [5] Herman, D., Patterson, M., and Soulas, G. "NEXT Long-Duration Test Plume and Wear Characteristics After 17,200 hours of Operation and 352 kg of Xenon Processed," AIAA-2008-4919, 44th AIAA/ASME/SAE/ASEE JPC, Hartford, CT, July 2008.
- [6] Patterson, M. and Benson, S., "NEXT Ion-propulsion system Development Status and Performance", AIAA-2007-5199, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [7] Benson, S., Riehl, J., Oleson, S., "NEXT Ion-propulsion system Configurations and Performance for Saturn System Exploration", AIAA-2007-5230, 43rd JPC, Cincinnati, OH, July 2007.
- [8] Benson, S. and Patterson, M., "Technology Readiness of the NEXT Ion-propulsion system", 2008 IEEE Aerospace Conference, IEEEAC Paper #1479, Big Sky, MT, March 2008.
- [9] Monheiser, J., Aadland, R. and Wilson, A., "Development of a Ground Based Digital Control Interface Unit (DCIU) for the NEXT Propulsion System," AIAA-2004-4112, 40th JPC, Fort Lauderdale, FL, July 2004.
- [10] Aadland, R., Monheiser, J., Driscoll, E., Wilson, F., Benson, S., "Development Status of NEXT Propellant Management System," AIAA-2004-3974, 40th JPC, Fort Lauderdale, FL, July 2004.
- [11] Herman, D., Soulas, G. and Patterson, M. "Performance Evaluation of the 40-cm NEXT Prototype Model Ion Thruster", AIAA-2007-5212, 43rd AIAA/ASME/SAE/ASEEJPC, Cincinnati, OH, July 2007.

- [12] Soulas, G., Patterson, M. Van Noord, J., "NEXT Ion Thruster Performance Dispersion Analyses", AIAA-2007-5213, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [13] Van Noord, J. and Williams, G., "Lifetime Assessment of the NEXT Ion Thruster", AIAA-2007-5274, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [14] Herman, D., Soulas, G., and Patterson, M., "Status of the NEXT Ion Thruster Long-Duration Test", AIAA-2007-5272, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [15] Snyder J., Anderson, J., Soulas, G., Van Noord, J., "Environmental Testing of the NEXT PM1 Ion Engine", AIAA-2007-5275, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [16] Anderson, J., Snyder, J., Van Noord, J., and Soulas, G., "Thermal Development Test of the NEXT PM1 Ion Engine", AIAA-2007-5217, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [17] Van Noord, J., "NEXT Ion Thruster Thermal Model", AIAA-2007-5218, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [18] Pinero, L., Todd, P. and Hopson, M. "Integration and Qualification of the NEXT Power Processing Unit", AIAA-2007-5214, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [19] Pinero, L., Patterson, M., and Sovey, J., "NEXT Thruster Component Verification Testing" AIAA-2007-5276, 43rd AIAA/ASME/SAE/ASEE JPC, Cincinnati, OH, July 2007.
- [20] Patterson, M., Foster, J., McEwen, H., Pencil, E., Van Noord, J. and Herman, D., "NEXT Multi-Thruster Array Test - Engineering Demonstration," AIAA-2006-5180, 42nd JPC, Sacramento, CA, July 2006.
- [21] Pencil, E., Foster, J., Patterson, M., Van Noord, J., McEwen, H., Diaz, E., "Ion Beam Characterization of the NEXT Multi-Thruster Array Plume," AIAA-2006-5182, 42nd JPC, Sacramento, CA, July 2006.
- [22] McEwen, H., Foster, J., Pencil, E., Patterson, M., Diaz, E. and Van Noord, J., "Characterization of Plasma Flux Incident on a Multi-Thruster Array," AIAA-2006-5183, 42nd Joint Propulsion Conference, Sacramento, CA, July 2006.
- [23] Foster, J., Patterson, M., Pencil, E., McEwen, H., Diaz, E. and Van Noord, J., "Plasma Characteristics Measured in the Plume of a NEXT Multi-Thruster Array," AIAA-2006-5184, 42nd Joint Propulsion Conference, Sacramento, CA, July 2006.
- [24] Foster, J., Pencil, E., McEwen, H. Patterson, M., Diaz, E. and Van Noord, J., "Neutralizer Plasma Coupling in a NEXT Multi-Thruster Array," AIAA-2006-5184, 42nd Joint Propulsion Conference, Sacramento, CA, July 2006.

- [25] Aadland, R. S., Frederick, H., Benson, S. W., and Malone, S. P., "Development Results of the NEXT Propellant Management System," 54th JANNAF Propulsion Meeting, (Dec 2005).
- [26] Soulas, G., et al., "NEXT Single String Integration Test Results," AIAA-2009-4816, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC), Denver, CO, August 2009.
- [27] Crofton, M., et al., "Characterization of the NASA NEXT Thruster," AIAA-2009-4815, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC), Denver, CO, August 2009.
- [28] Herman, D., Soulas, G. and Patterson, M., "Status of the NEXT Long-Duration Test After 23,300 Hours of Operation," AIAA-2009-4917, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC), Denver, CO, August 2009.
- [29] Beiting, E.J., Eapen, X.L., and Patterson, M.J., "Effects on Passing Microwave Beams through an Ion Thruster Plume", Paper No. 1841184, Space Propulsion 2010 Conference, San Sebastian, Spain, May 3-6, 2010.
- [30] Pollard, J.E., et al., "Spatially-Resolved Beam Current and Charge-State Distributions for the NEXT Ion Engine," AIAA-2010-6779, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, August 2010.
- [31] Diamant, K.D., et al., "Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster," Journal of Propulsion and Power 2011, 0748-4658 vol.27 no.4 (777-785), doi: 10.2514/1.54665.
- [32] Pinero, L., Benson, S. W., "NEXT Engineering Model PPU Development, Progress and Plans," AIAA-2011-5659, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, August 2011.
- [33] Soeder J., Scheidegger, R., Pinero, L., Birchenough, A., Dunning, J., NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis", AIAA 2012-4221, 10th International Energy Conversion Engineering Conference, 30 July–01 August, 2012, Atlanta, GA.
- [34] Soulas, G., et al., "The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters", IEPC-2013-157, 33rd International Electric Propulsion Conference, Washington, DC, October 6-10, 2013.
- [35] Shastry, R., et al., Status of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 50,000 h and 900 kg Throughput", IEPC-2013-121, 33rd International Electric Propulsion Conference, Washington, DC, October 6-10, 2013.

7.0 APPENDIXES

A. NEXT TECHNOLOGY PROJECT COMPONENTS

A.1 Introduction

This appendix provides summaries of other ion-propulsion system components other than the Thruster and PPU that were developed under the NEXT technology project. These summaries are provided for information only. These components are not part of the GFE provisions of the NEXT-C project.

A.2 Propellant Management Subsystem (PMS)

Aerojet designed and fabricated the NEXT EM high pressure and low pressure assemblies (HPA, LPA) and the primary flow control components of an overall xenon feed system. Both assemblies are shown in Figure A.2-1. The HPA, composed of parallel redundant proportional flow control valves (PFCV) and pressure transducers, steps the xenon pressure from tank pressure to a nominal regulated LPA inlet pressure of 35 psia, or provides unregulated pressure below 35 psia for end-of-mission operations. The LPA consists of three flow-control kernels to supply throttled xenon flow to the thruster main plenum, discharge cathode and neutralizer cathode. Initial validation of the propellant management system (PMS) technology was accomplished during breadboard system integration testing in the first NEXT project phase in 2003. EM assemblies were fabricated and tested in the project phase 2. Key PMS validation activities include performance acceptance and environmental testing, and testing in integrated single-string and multi-string thruster strings, all of which were successfully completed. The PMS assemblies were judged as TRL 6 in three of four independent TRL assessments.

High Pressure Assembly (HPA): Pressure stepdown from tank pressure to nominal operating pressure

Low Pressure Assembly: Xenon flow control to the three inlets on the NEXT thruster

Tested to Qualification-Level Environments			
Vibration	14.1 G _{rms} 2 min/axis		
Thermal/Vacuum	-12 to +70°C 3 full cycles 24 h of operations at -12 °C and +70°C		

Performance Characteristics				
HPA Mass, kg	1.9			
LPA Mass, kg	3.1			
HPA Dimensions, cm	33x18x7			
LPA Dimensions, cm	44x28x7			
HPA Power Consumption, W	1.6			
LPA Power Consumption, W	8.1			
Flow Rate Accuracy	<3%			
HPA Inlet Pressure, psia	<2700			
Tank unusable residual xenon	<1%			

LPA Operating Modes

Nominal:

Pressure Control Loop

Fixed thermal throttle temperature

Variable PFCV orifice to control pressure and calibrated flow rate

Fault Mode

- Thermal Control Loop
- o Fixed PFCV orifice and internal pressure

o Variable thermal throttle temperature to control flow rate

 Allows control of multiple thruster flows with one or two PFCVs by opening cross-over latch valves.

o LPA power consumption is higher in fault mode than in normal mode

Figure A.2-1: Propellant Management System

A.3 Gimbal Component Summary

ATK, under contract to the Jet Propulsion Laboratory (JPL), designed and fabricated the NEXT gimbal (Figure A.3-1). ATK delivered one complete gimbal assembly with sufficient parts for a second assembly. The gimbal provides maximum angular authority of $\pm 19^{\circ}$ and $\pm 17^{\circ}$ about the primary gimbal axes and a rough cone about the thruster centerline within those boundaries. The NEXT gimbal has a significantly smaller spacecraft interface footprint as compared to the Dawn/NSTAR gimbal. The gimbal is a flight-like design using JPL-approved materials with

certifications, and stepper motors that have a space-rated option. The design of the gimbal was as a flight-packaged unit without substantive thermal analysis. Therefore, only functional testing and structural dynamic analyses and testing were performed on the gimbal. The gimbal successfully completed functionality tests with the PM thruster. The gimbal passed two qualification-level vibration tests and low-level shock tests with minor issues. The gimbal was judged as being across a range of TRL 4-6 in four independent TRL assessments.

- Three strut attachment to spacecraft
- Thruster retention in launch position
- Thruster deployed to raised operation position after launch.

Tested to Qualification-Level Environments					
Vibration	10 G _{rms}				
(in thruster/gimbal assembly)	2 min/axis				

Post-vibration functional testing

Performance Characteristics			
Mass, kg	6		
X-Axis Range of Motion, Degrees	±19		
Y-Axis Range of Motion, Degrees	±17		
Slew rate, degrees/sec	>0.6		

Gimbal mounting envelope

A.4 Digital Control Interface Unit (DCIU) Summary

The NEXT project developed a simulator for the system Digital Control Interface Unit (DCIU), providing the capability to operate the key technology products in an integrated system. The primary functions of the DCIU are to interface to the spacecraft flight processor for high level commands and telemetry, and to control the PPU and PMS assemblies, effectively throttling the ion thruster(s). The simulator is personal computer-based test equipment with brassboard-level PM pressure loop control cards, and is capable of operating a three-thruster-string system.

A.5 NEXT Technology Project System Integration Tests

Three test activities categorized as system-level tests were conducted during the NEXT technology project:

- multi-thruster array tests
- a single-string system integration test (SSIT)
- a multi-string system integration test (MSIT)

The objective of the multi-thruster array test was to assess thruster and plasma interactions with sensitivities to thruster spacing, gimbaled thrusters and neutralizer operating modes. The configuration included four GRC EM thrusters; three operating and one instrumented non-operating as well as an extensive suite of diagnostics to collect data for multi-thruster system modeling and analyses. The multi-thruster array test included single, dual, and triple thruster operations. Results indicate that expected thruster performance was achieved and thruster operations were understood without significant sensitivity to system configuration. Results from the multi-thruster array tests were documented in the following papers:

AIAA 2006-5180 NEXT Multi Thruster Array Test – Engineering Demonstration
AIAA 2006-5181 Plasma Characteristics Measured in the Plume of a NEXT Multi-Thruster Array
AIAA 2006-5182 Ion Beam Characterization of the NEXT Multi-Thruster Array Plume
AIAA 2006-5183 Characterization of Plasma Flux Incident on a Multi-Thruster Array
AIAA 2006-5184 Characterization of a NEXT Multi-Thruster Array with the Electrostatic Probes

The scope of the Single-String System Integration Test (SSIT) was to verify that the integrated system of NEXT components meets the project requirements in a relevant environment. The primary objectives were to demonstrate:

- operation of the thruster over the throttle table with PPU and PMS,
- operation of system at off-nominal conditions,
- recycle and fault protection operation; and
- verification of a wide range of system-level requirements, including functional, performance, environmental and interface requirements

The test configuration included the PM thruster, EM PPU, the EM PMS as well as the DCIU simulator. The test started in May 2008 and continued through August when a PPU part failure interrupted the test sequence. Testing that did not require the PPU was then completed, resulting in completion of 70-80 percent of the test objectives.

A Multi-string System Integration Test (MSIT) was conducted following the SSIT, demonstrating successful operations of three thrusters (PM1R and two EM thrusters) with the PMS HPA and three LPAs controlled by the DCIU simulator.

B. PM THRUSTER AND EM PPU PERFORMANCE

B.1 NEXT PM Thruster Throttle Table 11

Throttle	Xenon	Beam	Beam	_		Thruster	Thruster
Level	Flow	Current	Voltage	Thrust	lsp	Efficiency	Input Power
	mg/s	A	v	mN	seconds	Efficiency	vv
TL40	5.76	3.52	1.800	235	4,155	0.70	6.853
TL39	5.76	3.52	1,567	219	3,886	0.69	6.046
TL 38	5.76	3.52	1 396	208	3 683	0.69	5 4 5 4
TL37	5.76	3.52	1,179	192	3,408	0.68	4,703
			_,		-,		.,
TL36	5.12	3.10	1.800	206	4.096	0.68	6.052
TL35	5.12	3.10	1,567	193	3,838	0.68	5,341
TL34	5.12	3.10	1,396	183	3,638	0.68	4,819
TL33	5.12	3.10	1,179	169	3,360	0.67	4,158
TL32	4.46	2.70	1,800	178	4,082	0.68	5,285
TL31	4.46	2.70	1,567	167	3,823	0.67	4,666
TL30	4.46	2.70	1,396	159	3,626	0.67	4,212
TL29	4.46	2.70	1,179	146	3,348	0.66	3,636
TL28	4.46	2.70	1,021	137	3,137	0.66	3,217
TL27	3.92	2.35	1,800	155	4,032	0.66	4,614
TL26	3.92	2.35	1,567	145	3,773	0.66	4,075
TL25	3.92	2.35	1,396	137	3,571	0.65	3,680
TL24	3.92	2.35	1,179	127	3,299	0.65	3,178
TL23	3.92	2.35	1,021	119	3,090	0.64	2,814
TL22	3.16	2.00	1,800	131	4,220	0.68	4,002
TL21	3.16	2.00	1,567	123	3,951	0.67	3,541
TL20	3.16	2.00	1,396	116	3,736	0.66	3,204
TL 19	3.16	2.00	1,179	107	3,450	0.65	2,778
TLIO	3.16	2.00	1,021	100	3,235	0.64	2,470
TI 17	2.60	1.60	1 800	104	4.087	0.64	3 244
TI 16	2.00	1.00	1,800	98	2,007	0.64	2,244
TL 15	2.00	1.00	1,307	92	3,613	0.63	2,870
TL14	2.60	1.60	1,179	85	3,332	0.61	2,265
TL13	2.60	1.60	1.021	80	3.117	0.60	2.019
			_,		-,		2,020
TL12	2.05	1.20	1,800	78	3,882	0.61	2,437
TL11	2.05	1.20	1,567	73	3,633	0.60	2,160
TL10	2.05	1.20	1,396	69	3,432	0.59	1,958
TL09	2.05	1.20	1,179	63	3,163	0.58	1,702
TL08	2.05	1.20	1,021	59	2,953	0.57	1,517
TL07	2.05	1.20	936	57	2,839	0.56	1,419
TL06	2.05	1.20	850	54	2,716	0.55	1,319
TL05	2.05	1.20	679	49	2,449	0.53	1,120
TL04	2.05	1.20	650	48	2,389	0.52	1,085
TL03	2.05	1.20	400	37	1,850	0.43	788
TL02	2.05	1.20	300	31	1,564	0.36	668
TION							
IL01	1.85	1.00	275	25	1,395	0.32	545

Table B.1-1: NEXT PM Thruster Throttle Table 11 (Beginning of Life)

B.2 NEXT Expanded Throttle Levels

The Throttle levels below represent additional performance capability of the NEXT thruster, and are provided for reference information only.

Throttle	Xenon	Beam	Beam			Thruster	Thruster	
Level	Flow	Current	Voltage	Thrust	lsp	Efficiency	Input Power	
	mg/s	Α	V	mN	seconds	Efficiency	w	
ETL3.52A	5.71	3.52	1,021	177	3,169	0.66	4,155	
ETL3.52B	5.66	3.52	936	170	3,060	0.66	3,861	
ETL3.52C	5.66	3.52	850	162	2,926	0.65	3,563	
ETL3.52D	5.66	3.52	700	146	2,638	0.62	3,038	
ETL3.1A	5.07	3.10	1,021	156	3,147	0.66	3,676	
ETL3.1B	5.02	3.10	936	150	3,042	0.65	3,416	
ETL3.1C	5.02	3.10	850	143	2,898	0.64	3,154	
ETL3.1D	5.02	3.10	700	129	2,624	0.62	2,694	
ETL3.1E	5.02	3.10	679	127	2,581	0.61	2,629	
ETL2.7A	4.41	2.70	936	130	3,018	0.65	2,991	
ETL2.7B	4.41	2.70	850	124	2,875	0.63	2,763	
ETL2.7C	4.41	2.70	700	113	2,606	0.61	2,364	
ETL2.7D	4.41	2.70	679	111	2,565	0.60	2,306	
ETL2.7E	4.41	2.70	650	108	2,506	0.60	2,228	
ETL2.35A	3.88	2.35	936	114	2,993	0.64	2,617	
ETL2.35B	3.88	2.35	850	108	2,851	0.63	2,418	
ETL2.35C	3.88	2.35	700	98	2,585	0.60	2,071	
ETL2.35D	3.88	2.35	679	97	2,544	0.60	2,023	
ETL2.35E	3.88	2.35	650	95	2,487	0.59	1,955	
ETL2.0A	3.21	2.00	936	96	3,053	0.63	2,304	
ETL2.0B	3.21	2.00	850	92	2,909	0.61	2,136	
ETL2.0C	3.21	2.00	700	83	2,639	0.58	1,844	
ETL2.0D	3.21	2.00	679	82	2,598	0.58	1,803	
ETL2.0E	3.21	2.00	650	80	2,541	0.57	1,747	
ETL1.6A	2.63	1.60	936	77	2,982	0.60	1,886	
ETL1.6B	2.63	1.60	850	73	2,839	0.58	1,752	
ETL1.6C	2.63	1.60	700	66	2,574	0.55	1,518	
ETL1.6D	2.63	1.60	679	65	2,534	0.55	1,485	
ETL1.6E	2.63	1.60	650	64	2,479	0.54	1,440	
ETL1.6F	2.63	1.60	400	50	1,921	0.45	1,043	

Table B.2-1: NEXT PM Thruster Extended Throttle Table 11 (Beginning of Life)

B.3 NEXT PM Thruster/EM PPU Curve Fits

The following table provides curve fit coefficients for use in mission analysis. P_0 is power into the EM PPU in kilowatts. The three data sets represent the:

- High Specific Impulse boundary of the throttle table
- High Thrust boundary of the baseline throttle table (TL 1-40)
- High Thrust boundary of the throttle table including Expanded Throttle levels

Table B.3-1:	NEXT PM	Thruster/EM	PPU	Curve Fits
--------------	---------	-------------	-----	-------------------

			1	P0 ¹	P ₀ ²	P ₀ ³	P ₀ ⁴
Baseline Throttle Table 11	Fhrust	Thrust Fit (N)	1.19388817E-02	1.60989424E-02	1.14181412E-02	-2.04053417E-03	1.01855017E-04
	High T	Mdot Fit (kg/s)	2.75956482E-06	-1.71102132E-06	1.21670237E-06	-2.07253445E-07	1.10213671E-08
(Throttle							
Levels 1-40) ^{ds} - 4 ^g H	Thrust Fit (N)	3.68945763E-03	4.05432510E-02	-7.91621814E-03	1.72548416E-03	-1.11563126E-04	
	Mdot Fit (kg/s)	2.22052155E-06	-1.80919262E-07	2.77715756E-08	2.98873982E-08	-2.91399146E-09	

Expanded Throttle	hrust	Thrust Fit (N)	-8.04281458E-04	3.71873936E-02	5.17797704E-03	-1.42659172E-03	8.51206723E-05
Levels (ETLs)	High T	Mdot Fit (kg/s)	1.40535083E-06	5.34442545E-07	5.35910391E-07	-1.38009326E-07	9.01951897E-09

C. NEXT-C SCHEDULE

2015 2016 2017 2018 2019			Ν	IEX	T-(CN	/ile	est	on	e S	un	nm	nar	y					
		2	015		2016				2017				2018				2019		
Image: biole biol		Q1 Q2	Q3	Q4	Q1 Q2 Q3 Q4			Q4	Q1	Q1 Q2 Q3 Q4		Q4	Q1 Q2 Q3 Q4			Q4	Q1	Q2	Q3
Project Milestones Contract Kickoff SSR System PDR Thruster TIM Integ. System CDR Ship GFE Heaters to AR Hardware Acceptance Review (HAR) with Customer - System Mew Frontiers Down Selection New Frontiers AO Prop Due Step 1 Selection Down Selection Hardware Milestones PPU Unit A completed PPU Unit A completed PPU Unit Song Detected PPU Unit Song Detected AeroJet Development Testing at GRC Ship DEV-C Thruster to GRC Thruster DEV-C Testing & Verification (GRC) Testing and Verification FIt Thruster SN1		J F M A M J	J A S	O N D	J F M	A M J	J A S	O N D	J F M	A M J	J A S	O N D	J F M	A M J	J A S	O N D	J F M	A M J	J A S
New Frontiers AO Prop Due Step 1 Selection Down Selection Hardware Milestones PPU Unit A completed PPU Unit A completed PPU Unit B completed PPU Unit B completed PPU Unit Sn1 completed PPU Unit Sn2 completed Image: Ship DEV-C Thruster DEV-C Testing & Verification (GRC) Image: Ship DEV-C Testing & Verification (GRC)<	Project Milestones	Contract Kick	off		◆ Syst	em PDR		T	PPU TI	M TIM 🔶 tem CDR Hardw	are Acce	Ship GFE eptance R	Heaters t eview (H	to AR IAR) with	Custome	r - System	•		
Hardware Milestones PPU Unit A completed PPU Unit B completed Thruster Unit Sn1 completed Thruster Unit Sn2 completed Image: Ship DEV-C Thruster Unit Sn2 completed Image: Ship DEV-C Thruster Unit Sn2 completed Image: Ship DEV-C Thruster to GRC Image: Ship DEV-C Thruster DEV-C Testing & Verification (GRC) Image: Ship DEV-C Testing & Ve	New Frontiers							AO�		Prop	Due	♦ S	itep 1 Sel	lection			Dow	n Selectio	on 🔶
AeroJet Development Testing at GRC Ship DEV-C Thruster to GRC Aerojet Flight Testing at GRC Testing and Verification Flt Thruster SN1	Hardware Milestones									PF PF Thrusto Thrusto	PU Unit / PU Unit I er Unit S er Unit S	A comple 3 comple in1 comp in2 comp	ted 🔶 ted 🔶 leted 🔶 leted 🔶						
Aerojet Flight Testing at GRC	AeroJet Development Testing at GRC								Sh	ip DEV-C	Thruster er DEV-C	to GRC Testing	& Verifica	ation (GR	C)				
SIT perty-func Flight: PPO Unit A, PPO Unit B, Infruster Sh2	Aerojet Flight Testing at GRC								Testing Test	g and Veri ing and V GIT perf/F	fication erificatio unc Fligh	Flt Thrus on Flt Thr nt: PPU U	ter SN1 uster SNI nit A, PPI	2 (GRC) U Unit B,	Thruster :	5n2 100			
GRC Tasks	GRC Tasks								(crifing)			GRC Catl Ship GF	hode Hea E Heater t Test Ins	ater Deve rs to AR spection 1	lopment ⁻ ask				
Algorithm vertication							Ale	sorithm V	erincatio	ווע			asyn ann a						
Service Life Model Verification		and the second second					1					Service	Life Mod	el Verific	ation				

EXT-C Schedule _1-17-17.mpp; GRC_NEXT-C Schedule _12-15-16.mpp

te: 1/19/2017 Snapshot D

reated in OnePage

D. ACRONYMS AND ABBREVIATIONS

Acronyms	Definitions
AO	Announcement of Opportunity
AU	Astronomical Unit
AWG	American Wire Gage
BIT	Built in Test
BITE	Built in Test Equipment
CEI	Component End Item
dB	decibel
DCIU	Digital Control Interface Unit
EDU	Engineering Development Unit
EEE	Electrical, Electronic, and Electromechanical
EM	engineering model
EMC	Electro Magnetic Compatibility
ESD	Electro Static Discharge
ETL	Extended Throttle Level
F	Fahrenheit
FDIR	Fault Detection, Isolation, and Recovery
FU	Flight Unit
g	gravity
GFE	Government Furnished Equipment
GRC	Glenn Research Center
GSE	Ground Support Equipment
HPA	High Pressure Assembly
Hz	Hertz
ICD	Interface Control Document
IPS	Ion-propulsion system
ISPT	In-Space Propulsion Technology
ITAR	International Traffic in Arms Regulations
LDT	Long Duration Test
LPA	Low Pressure Assembly
MLC	multi-layer ceramic
MSIT	Multi-String System Integration Test
NASA	National Aeronautics and Space Agency

Acronyms	Definitions
NEDD	Natural Environments Design Document
NEXT	NASA's Evolutionary Xenon Thruster
NEXT	NASA Evolutionary Xenon Thruster
NPR	NASA Procedural Requirements
NSTAR	NASA's Solar Electric Propulsion Application Readiness
OFI	Operational Flight Instrumentation
PFCV	Proportional Flow Control Valve
РМ	Prototype Model
PMS	Propellant Management System
PPU	Power Processing Unit
PWB	Printed Wiring Board
RMS	Root Mean Square
SBU	Sensitive But Unclassified
SEP	Solar Electric Propulsion
SMT	Surface Mounted Technology
SRU	Shop Replaceable Unit
SSIT	Single String Integration Test
TBD	To Be Determined
TBR	To Be Reviewed
TL	throttle levels
TSE	Test Support Equipment
TT11	NEXT Throttle Table 11
VDC	Volts Direct Current