

AMBR Status Information Outline

- **□Overview**
- **□**Objectives
- **□**Benefits
- **□**Heritage
- □Results To-Date
- **□Remaining Tasks**


NRA High Temperature Bipropellant Thruster (AMBR)

Kickoff

Objective

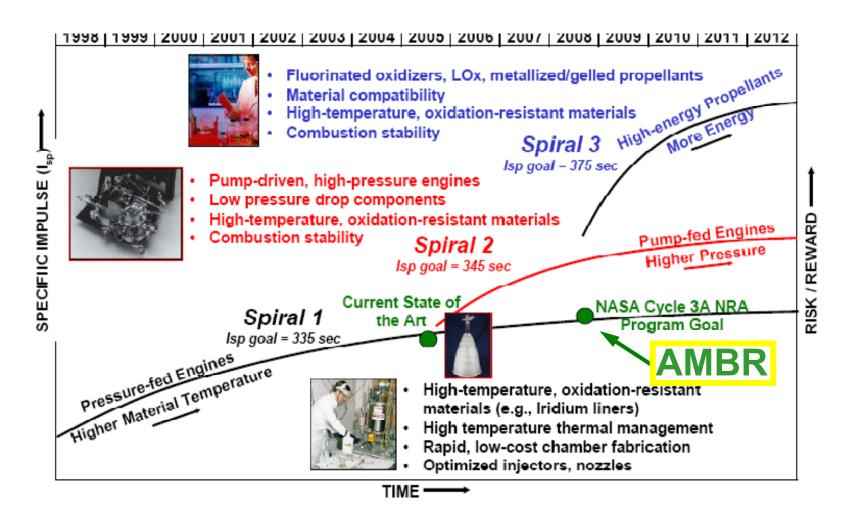
- •Improve the bipropellant engine Isp performance by fully exploiting the benefits of advanced thrust chamber materials
- •Goals
 - * 335 seconds Isp with NTO/N2H4
 - * 1 hour operating (firing) time
 - * 200 lbf thrust
 - * 3-10 years mission life

Approach

- Adopt operating conditions to allow the thruster to run at higher temperatures and pressures
- Test a baseline engine for model development
- Evaluate materials and fabrication processes
- Develop advanced injector and chamber design
- Fabricate and test a prototype engine
- Environmental testing: life hotfire, vibe, and shock tests

Key Milestones/Upcoming Events

111011011	~ P
 Mission and System Analysis TIM 	Dec.
Baseline Testing	Feb. 2007
• Risk Mitigation Chamber Testing	Nov.
• Engine Primary Performance Testing	Oct. 2008
• Vibe and Shock Testing Jan. 2009	
 Additional Performance Testing 	Feb. 2009
• Life Testing	July 2009


Sept 2006

AMBR Thruster within a Bi-Prop Technology Plan

Technology Advancement Spirals

Mission and System Studies Show Benefit

□ Conducted mission and system studies to identify propulsion technology requirements and impacts

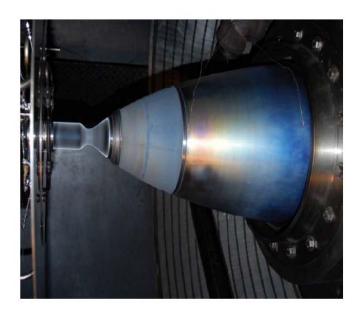
AMBR Engine potential mass reduction for the missions

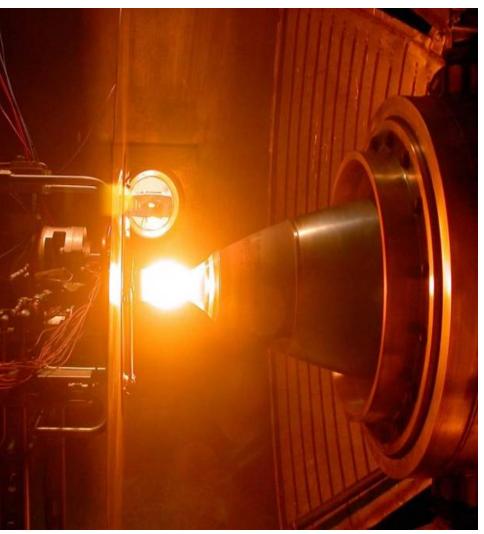
- Results show increased performance can reduce the propellant required to perform spacecraft maneuvers.
- Propellant reduction implies increase of payload

	Total Propulsion System Mass Reduction (Kg)				
Isp (sec)	320	325	330	332.5	335
GTO to GEO	0	16	30	37	45
Europa Orbiter	N/A	0	12	16	24
Mars Orbiter	N/A	0	14	22	29
T - E Orbiter	N/A	0	29	45	60

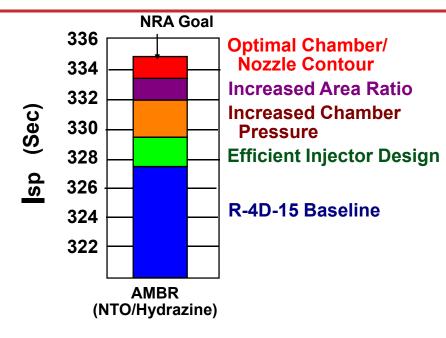
- ☐ The AMBR technology is an *improvement* upon the existing HiPATTM engine
- □ The HiPATTM engine is a member of the *Aerojet Corporation's R-4D Family* of thrusters
- ☐ The R-4D family of thrusters carries the heritage: >1000 engines delivered, >650 flown, 100% success rate

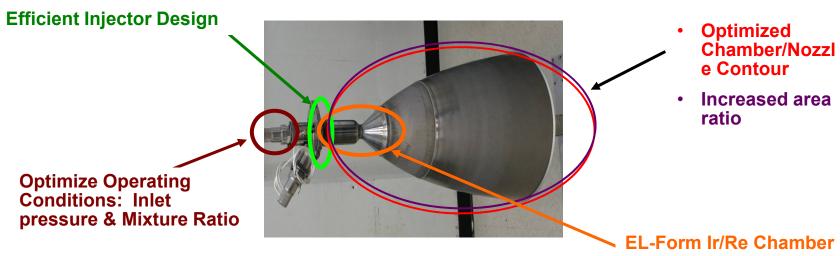
Project Evolution



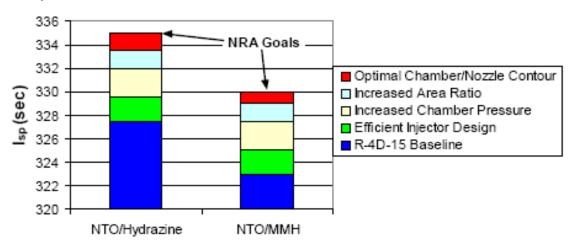

- □ Original NRA objective was technology demonstration of both an NTO/Hydrazine and NTO/MMH bipropellant engines
 - Fully utilize the advanced material potential of higher operating temperature for increased performance
 - · Optimize injector and chamber, shift MR
 - Update procedure and processes for reduced cost production
 - Physical "drop-in" for the HiPAT engine
- □ Performance goals were to push the technology as far as practicable, as a potential stepping stone for a higher pressure thruster (spiral 2)
- ☐ In 2007, SMD directed the project to close out development activities with potential product at TRL 6.
 - Decision was made to eliminated NTO/MMH engine performance demonstration in favor of more TRL 6 validation activities
 - No expected technology challenges, engine design iteration required for NTO/MMH version
 - Added environmental testing of NTO/Hydrazine engine
 - Added increased duration testing for NTO/Hydrazine engine
 - Lowered pressure to accommodate existing tanks and subsystems to improve nearerterm applicability for New Frontiers and Discovery class missions
 - 200 lbf Thrust goal unachievable at both lower pressure and HiPAT physical envelope
- ☐ In 2009, the AMBR engine will be available for transition into full flight development and qualification program for NF-3 infusion.

Thruster Installed and Performance Tested



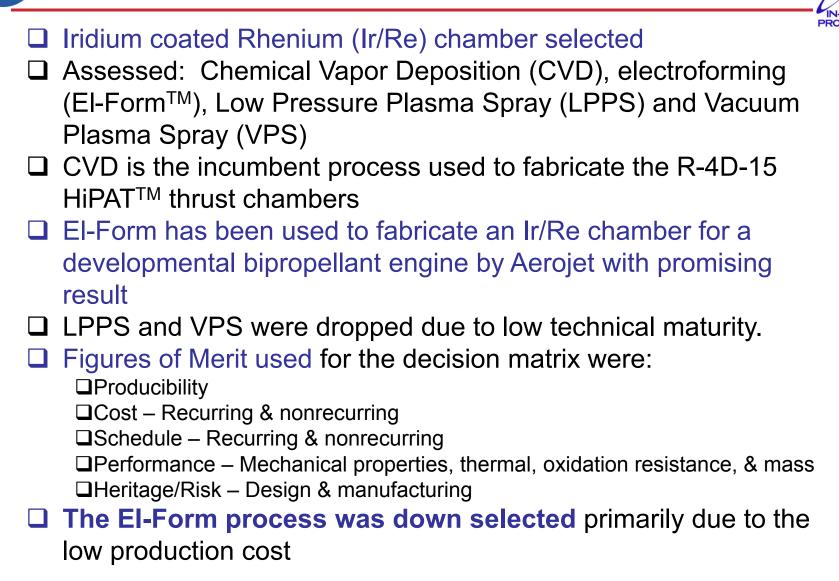


AMBR Technologies



Design for Higher Performance

- Modify Aerojet's state of the art engine design to fully utilize the high temperature capability of the Ir/Re chamber
 - Optimized injector
 - Optimized chamber/nozzle contour
 - Reduced chamber emissivity
 - Increased thermal resistance between injector and chamber
- ☐ Change engine operating conditions (within mission constraints), which will produce higher combustion gas temperatures
 - Higher feed pressure/lower internal pressure drop
 - Higher/optimized mixture ratio

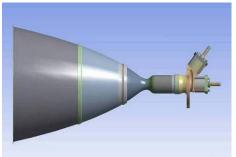


AMBR Thruster Design Detail

- ☐ Defined internal chamber and nozzle contours
- ☐ Finalized iridium layer thickness and an envelope that would contain the final rhenium thickness distribution
 - <u>Using R-4D-15DM random vibration spectrum for structural</u> calculations
- □ Evaluated design concepts for the injector chamber interface and pre-combustor step assembly to accomplish
 - Optimization of thermal design
 - Basic thermal model completed
 - Anchoring thermal model to baseline engine test data
 - Minimization of high cost materials
 - Simplification of fabrication and construction
- □ Performed additional injector development test with copper chamber to mitigate risk during the design phase
 - Injector performance and chamber length validated via C*
 - Resonator design verified
 - Goal for an Isp gain achievable

Selection of High Temperature Chamber Materials & Fabrication

AMBR Engine Accomplishment as of 04/17/09



Designed, fabricated, and tested the first generation

- AMBR engine
 Design
 - Thermal
 - Structural
 - Operating condition
 - Fabrication
 - Injector
 - EL-Form Ir/Re chamber
 - C103 nozzle/Ti nozzle extension

- Preliminary results show an Isp of 333 seconds highest Isp ever achieved for the hydrazine/NTO
- @ Propellant inlet pressure (275 psia) and mixture ratio (1.1) allow for integration with commonly available propulsion system components
- Vibration Testing Completed 12/10/08
 - Post test inspections showed no anomaly
 - Data analysis in progress
 - Used the HiPAT Qualification Level vibration test spectrum
- Shock Testing Completed 01/22/09
 - Post test inspections showed no anomaly
 - Data analysis in progress
 - Referenced the JUNO engine shock SRS
- Additional Performance Testing Completed 02/17/09
 - · Primarily at lower mixture ratios

AMBR a Proven Design for Higher Performance

AMBR (preliminary)

Design Characteristics	HIPAT DM	<u>Design</u>	<u>Test Results (10/1/08)</u>
-------------------------------	----------	---------------	-------------------------------

• Trust (lbf) (N2H4/NTO) 100 200 150

• Specific Impulse (sec) 326 / 329 335 333.5

• Inlet Pressure (psia) 250 400 275

Chamber Temperature (F) 3100 4000 ≥3900

Oxidizer/Fuel Ratio
 0.85
 1.2
 1.1

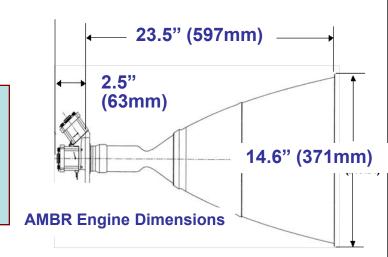
Expansion Ratio 300:1 / 375:1 400:1

Engine Mass (lbm)
 11.5 / 12
 12

Physical Envelope (Within existing HiPAT envelope (R4D-15-DM))

•Length (inch) 24.72 / 28.57 25.97

•Nozzle Exit Dia (in.) 12.8 / 14.25 14.6


Propellant Valves R-4D Valves R-4D valves

The AMBR technology is an improvement upon the existing HiPAT™ engine

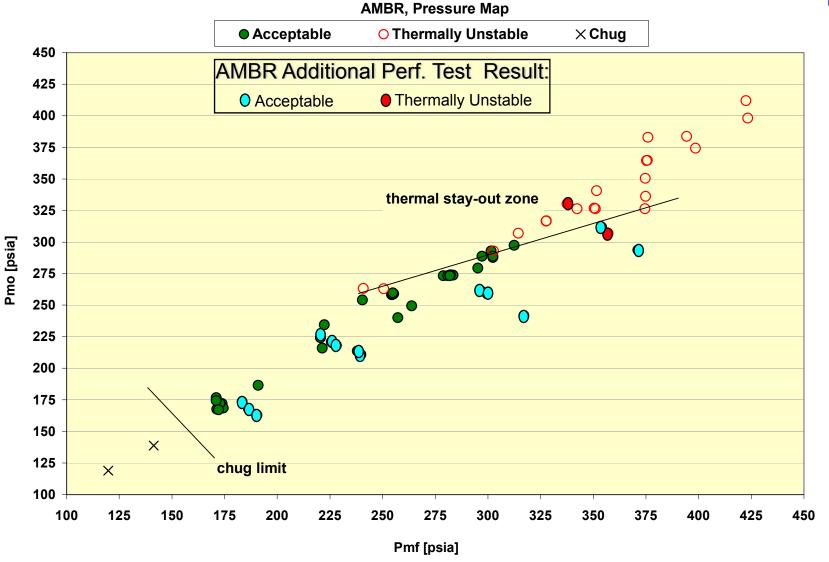
The HiPAT™ engine is one of the Aerojet Corporation's R-4D Family of thrusters

The R-4D family of thrusters carries the heritage: >1000 engines delivered, >650 flown, 100% success rate

(Primary) Performance Test Summary

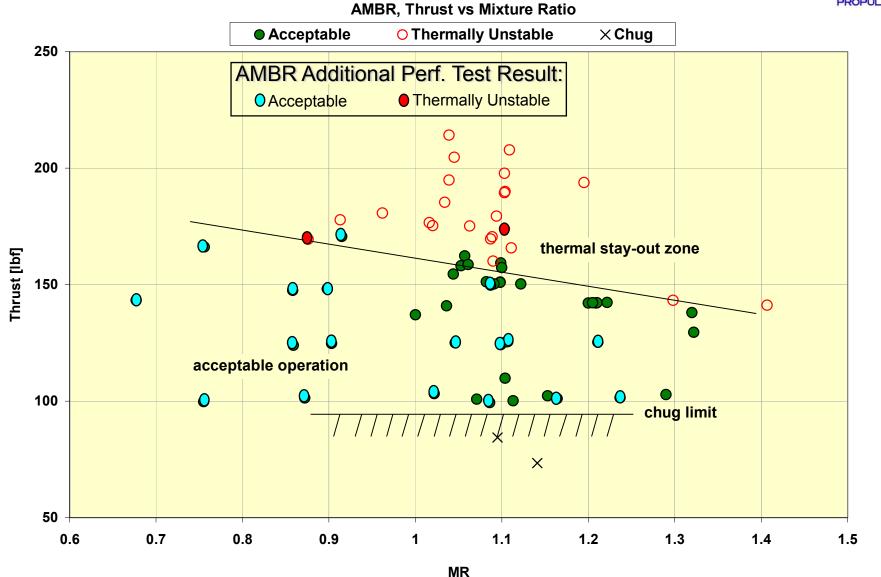
- ☐ 48 hot fire runs
- ☐ 4397 seconds of total burn time
- ☐ Propellant consumption
 - 1040 lbm NTO
 - 840 lbm N2H4
- **□** 3925-F maximum sustained chamber temperature
 - Max of 4025-F for transient
- ☐ 288.8-psia maximum chamber pressure
- ☐ 99.1 psia minimum chamber pressure
 - Low thrust limit for chugging
- □ 333.5 seconds maximum specific impulse (stable op.)
 - O/F = 1.1 & F = 151.1-lbf
 - O/F = 1.06 & F = 158.6-lbf

Pre Hot-Fire



Post Hot-Fire

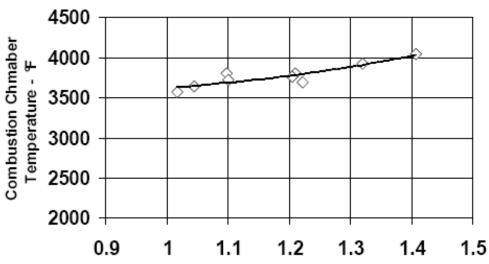
AMBR Test Result (containing all performance test data)



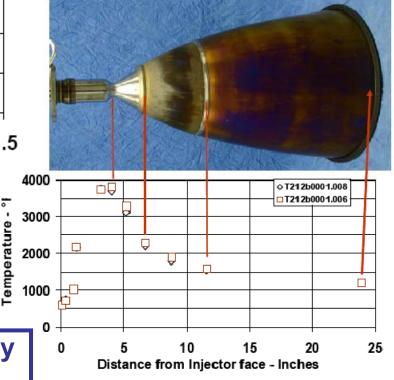
AMBR Test Result (containing all performance test data)

Notional Operating Box for AMBR

(Most recently evolved as of April 17, 2009)


18

AMBR Engine Temperature During Performance Test



0.9 1 1.1 1.2 Mixture Ratio

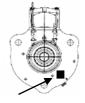
Combustion Chamber Temperature vs Mixture Ratio

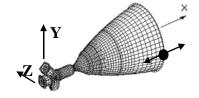
Exterior Temperature Scan Using Pyrometer

Utilizing High Temperature Capability of Ir/Re Combustion Chamber

AMBR Engine Vibration Test

Setting up AMBR Engine for Vibration Test at Aerojet, Redmond

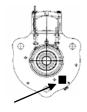

AMBR Engine Vibration Test Parameters

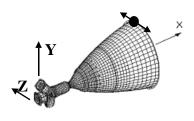


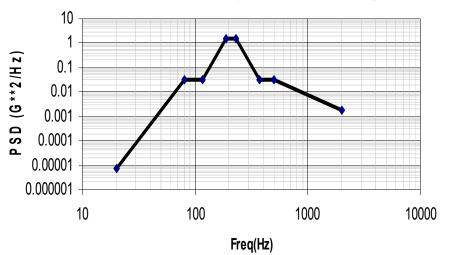
Completed AMBR vibration test on 12/10/2008

- —No anomaly observed
- —Data analysis is ongoing
- —Used the HiPAT Qualification Level vibration test spectrum

X-Axis




Y-Axis



Z-Axis

PSD ≡ Power Spectrum Density

Freq (Hz)	PSD (G ² /Hz)
20	0.0000073
80	0.03
117	0.03
190	1.5
230	1.5
375	0.03
500	0.03
2000	0.0018

Spectrum for Vibration Test

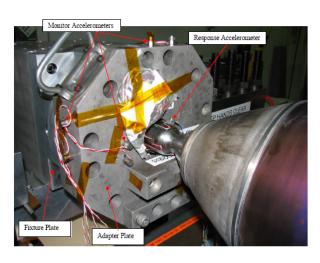
Shock Test Setup at JPL

Tunable Beam Setup

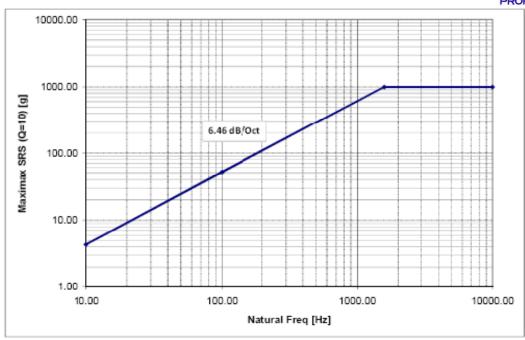
AMBR Engine Shock Testing at JPL

Shock Testing in X direction

Shock Testing in Y and Z direction



AMBR Engine Shock Test Parameters



Completed vibration test on 01/22/2009

- · No anomaly observed
- Data analysis and hardware inspection are underway
- Used the Shock Response Spectrum (SRS) adapted from JUNO mission

AMBR engine mounted on the adapter and fixture plate

Natural Frequency [Hz]	Maximax SRS [g] (Q=10)
10	4.4
100	52
1579	1000
10,000	1000
Two shock pulses per axis	

AMBR Points of Contact

AMBR Points of Contact at Aerojet:

AMBR Program Manager: Kimberly Wilson, 425-885-4510, kim.wilson@rocket.com

AMBR Project Manager: Scott Henderson, (425) 869-4560, scott.henderson@rocket.com